Dalam matematika, operator jumlah taktentu atau operator antiselisih, dilambangkan sebagai
atau
,[1][2][3] adalah operator linear, yang kebalikan dari operator selisih (atau selisih tentu)
. Ini berhubungan dengan operasi selisih maju sebagai integral tak tentu yang berhubungan dengan turunan. Demikian juga,
.
Lebih eksplisit lagi, jika
, kemudian

Jika
adalah solusi untuk persamaan fungsional ini untuk fungsi
, maka
untuk setiap fungsi periodik
dengan periode 1. Demikian pula, setiap penjumlahan tak tentu mewakili keluarga pada fungsi. Maka, penyelesaiannya sama dengan pengembangan dari deret Newton adalah unik untuk ke konstanta aditif
. Penyelesaian yang unik ini mewakili perubahan deret berpangkat secara formal pada operasi anti-selisihː

Penjumlahan tak hingga digunakan sebagai penjumlahan tentu dengan rumusː [4]


dimana
adalah bilangan Cauchy untuk jenis yang pertama atau disebut sebagai bilangan Bernoulli untuk Jenis Kedua.[5] [butuh rujukan]
![{\displaystyle \sum _{x}f(x)=\sum _{k=1}^{\infty }{\binom {x}{k}}\Delta ^{k-1}[f]\left(0\right)+C=\sum _{k=1}^{\infty }{\frac {\Delta ^{k-1}[f](0)}{k!}}(x)_{k}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6758a97991a0410ddfb47366eb53c4d7597ba5b5)
dimana
adalah faktorial menurun.

persamaan pada ruas kanan adalah konvergen.
Jika
maka


Seringkali, konstanta
pada jumlah tak tentu diperbaiki dengan kondisi berikut.
Misalnya

Maka, konstanta
diperbaiki dengan kondisi

atau

Secara alternatif, penjumlahan Ramanujan digunakan sebagaiː

atau dengan 1
.[6]
Penjumlahan tak hingga dengan bagian tertentuː


Penjumlahan tentu berdasarkan bagian, yaitu:

Jika
adalah periode fungsi
, maka

Jika
adalah fungsi antiperiode
, yaitu
, maka

Beberapa penulis menggunakan frasa "jumlah tak tentu" untuk mendeskripsikan sebuah penjumlahan dimana tidak diberikan nilai numerik pada indeks atas.

Dalam kasus seperti tersebut, perubahan ekspresi tertutup
untuk penjumlahan adalah solusi untuk

disebut sebagai persamanan teleskop. Kebalikan dari operator selisih mundur
. Berhubungan dengan operasi selisih maju menggunakan teorema fundanmental pada kalkulus diskrit yang dideskripsi sebelumnya.
Inilah daftar jumlah-jumlah tak tentu pada berbagai fungsi. Tidak setiap fungsi memiliki sebuah jumlah tak tentu yang dapat diekspresikan dalam hal fungsi dasar.



- dimana
, yang digeneralisasikan ke orde polinomial Bernoulli yang sebenarnya.

- dimana
adalah fungsi poligamma .

- dimana
adalah fungsi digamma.


Terutama,






- dimana
adalah fungsi q-digamma .





- dimana
adalah fungsi q-digamma .






- dimana
adalah fungsi gamma tidak kompleks.

- dimana
adalah faktorial menurun .

- (lihat fungsi eksponensial super)
- ^ Indefinite Sum di PlanetMath.
- ^ On Computing Closed Forms for Indefinite Summations. Yiu-Kwong Man. J. Symbolic Computation (1993), 16, 355-376[pranala nonaktif permanen]
- ^ "If Y is a function whose first difference is the function y, then Y is called an indefinite sum of y and denoted Δ−1y" Introduction to Difference Equations, Samuel Goldberg
- ^ "Handbook of discrete and combinatorial mathematics", Kenneth H. Rosen, John G. Michaels, CRC Press, 1999, ISBN 0-8493-0149-1
- ^ Bernoulli numbers of the second kind on Mathworld
- ^ Éric Delabaere, Ramanujan's Summation, Algorithms Seminar 2001–2002, F. Chyzak (ed.), INRIA, (2003), pp. 83–88.
- "Persamaan Perbedaan: Pengantar dengan Aplikasi", Walter G. Kelley, Allan C. Peterson, Academic Press, 2001, ISBN 0-12-403330-X
- Markus Müller. Bagaimana Menambahkan Jumlah Syarat Non-Integer, dan Bagaimana Membuat Penjumlahan Tak Terbatas yang Tidak Biasa
- Markus Mueller, Dierk Schleicher. Jumlah Pecahan dan Identitas Mirip Euler
- SP Polyakov. Penjumlahan tak terbatas dari fungsi rasional dengan minimisasi tambahan dari bagian yang dapat diringkas. Programmirovanie, 2008, Jil. 34, No. 2.
- "Persamaan dan Simulasi Beda-Hingga", Francis B. Hildebrand, Prenctice-Hall, 1968