Langley's Adventitious Angles
Langley’s Adventitious Angles adalah sebuah teka-teki yang diusul Edward Mann Langley dalam jurnal akademik The Mathematical Gazette pada tahun 1922.[1][2] Teka-teki ini diharuskan untuk menyimpulkan suatu sudut di dalam diagram geometrik dengan sudut yang diketahui lainnya.
Masalah
[sunting | sunting sumber]Masalah Langley's Adventitious Angles dalam bentuk aslinya mengatakan sebagai berikut:
ABC adalah segitiga sama kaki dengan ∠CBA = ∠ACB = 80°. CF yang membentuk sudut 30° ke AC memotong AB di F. BE yang membentuk sudut 20° ke AB memotong AC di E. Buktikan ∠BEF = 30°.[1][2][3]
Masalah menghitung sudut ∠BEF merupakan penerapan masalah Hansen yang standar. Walaupun perhitungan tersebut dapat diperlihatkan bahwa ∠BEF tepat bernilai 30°, perhitungan tersebut selalu meninggalkan keraguan mengenai nilai eksak yang hanya karena ketepatan nilai yang terbatas.
Solusi
[sunting | sunting sumber]Pada tahun 1923, James Mercer mengembangkan bukti langsung menggunakan geometri klasik.[2] Solusinya melibatkan penggambaran sebuah garis tambahan, dan kemudian menggunakan fakta bahwa sudut dalam dari segitiga yang ditambahkan hingga 180° secara berulang. Hal ini bertujuan untuk membuktikan bahwa segitiga-segitiga yang terdapat di dalam segitiga yang besar adalah sama kaki.
- Gambar garis BG yang membentuk sudut 20° ke BC, memotong AC di G, dan gambar garis FG.
- Karena ∠BCG = 80° dan ∠CBG = 20°, maka ∠BGC = 80°, dan segitiga BCG sama kaki dengan BC = BG.
- Karena ∠BCF = 50° dan ∠CBF = 80°, maka ∠BFC = 50°, dan segitiga BCF sama kaki dengna BC = BF.
- Karena ∠FBG = 60° dan BF = BG, maka BGF sama sisi.
- Karena ∠BCE = 100° dan ∠GBE = 40°, maka ∠GEB = 40°, dan segitiga BGE sama kaki dengan GB = GE.
- Oleh karena itu, semua garis merah pada gambar adalah sama.
- Karena GE = GF, maka segitiga EFG adalah sama kaki dengan sudut ∠GEF = 70°
Oleh karena itu, ∠BEF = 30°.
Rujukan
[sunting | sunting sumber]- ^ a b Langley, E. M. (1922), "Problem 644", The Mathematical Gazette, 11: 173
- ^ a b c Darling, David (2004), The Universal Book of Mathematics: From Abracadabra to Zeno's Paradoxes, John Wiley & Sons, hlm. 180, ISBN 9780471270478
- ^ Tripp, Colin (1975), "Adventitious angles", The Mathematical Gazette, 59 (408): 98–106, doi:10.2307/3616644, JSTOR 3616644