Lompat ke isi

Logika matematika

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
(Dialihkan dari Logika simbolik)

Logika matematika adalah cabang logika dan matematika yang mengandung kajian logika matematis dan aplikasi kajian ini pada bidang-bidang lain di luar matematika. Logika matematika berhubungan erat dengan ilmu komputer dan logika filosofis.[1] Tema utama dalam logika matematika antara lain adalah kekuatan ekspresif dari logika formal dan kekuatan deduktif dari sistem pembuktian formal. Logika matematika sering dibagi ke dalam cabang-cabang dari teori himpunan, teori model, teori rekursi, teori pembuktian, serta matematika konstruktif. Bidang-bidang ini memiliki hasil dasar logika yang serupa.

Jenis-jenis logika matematika

[sunting | sunting sumber]

Dalam penggunaan logika matematika seringkali ditemukan huruf S dan B atau F dan T. Arti dari keempat huruf tersebut adalah sebagai berikut:

S dan F merupakan dua huruf yang memiliki arti sama dalam logika matematika.

S : Salah

F : False


B dan T merupakan dua huruf yang memiliki arti sama dalam logika matematika.

B : Benar

T : True

1. Negasi (~)

[sunting | sunting sumber]

Negasi atau juga dikenal dengan "NOT" dalam pemrograman merupakan logika matematika yang berbentuk membalikkan suatu pernyataan. contoh penggunaan negasi adalah sebagai berikut:

x = nilai dari 1 + 1 adalah 2 (Benar)

~x = nilai dari 1 + 1 bukanlah 2 (Salah)

Tabel Kebenaran Negasi
x ~x
True (Benar) False (Salah)
False (Salah) True (Benar)

2. Konjungsi (^)

[sunting | sunting sumber]

3. Disjungsi (v)

[sunting | sunting sumber]

4. Implikasi (=>)

[sunting | sunting sumber]

5. Biimplikasi (<=>)

[sunting | sunting sumber]

Hukum logika

[sunting | sunting sumber]
  1. Hukum komutatif
    • p ∧ q ≡ q ∧ p
    • p ∨ q ≡ q ∨ p
  2. Hukum asosiatif
    • (p ∧ q) ∧ r ≡ p ∧ (q ∧ r)
    • (p ∨ q) ∨ r ≡ p ∨ (q ∨ r)
  3. Hukum distributif
    • p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
    • p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
  4. Hukum identitas
    • p ∧ B ≡ p
    • p ∨ S ≡ p
  5. Hukum ikatan
    • p ∧ S ≡ S
    • p ∨ B ≡ B
  6. Hukum negasi
    • p ∧ ~p ≡ S
    • p ∨ ~p ≡ B
  7. Hukum negasi ganda
    • ~(~p) ≡ p
  8. Hukum idempotent
    • p ∧ p ≡ p
    • p ∨ p ≡ p
  9. Hukum De Morgan
    • ~(p ∧ q) ≡ ~p ∨ ~q
    • ~(p ∨ q) ≡ ~p ∧ ~q
  10. Hukum penyerapan
    • p ∧ (p ∨ q) ≡ p
    • p ∨ (p ∧ q) ≡ p
  11. Negasi B dan S
    • ~B ≡ S
    • ~S ≡ B
  12. p → q ≡ ~p ∨ q
  13. p → q ≡ ~q → ~p
  14. p ↔ q ≡ (~p ∨ q) ∧ (p ∨ ~q)

Tabel kebenaran

[sunting | sunting sumber]

Invers, Konvers dan Kontraposisi

[sunting | sunting sumber]
  • Invers dari adalah ~p → ~q
  • Konvers dari adalah q → p
  • Kontraposisi dari adalah ~q → ~p

Penarikan kesimpulan

[sunting | sunting sumber]

Modus ponens

[sunting | sunting sumber]
premis 1: p → q
premis 2: p
kesimpulan: q

Modus tollens

[sunting | sunting sumber]
premis 1: p → q
premis 2: ~q
kesimpulan: ~p

Silogisme

[sunting | sunting sumber]
premis 1: p → q
premis 2: q → r
kesimpulan: p → r

Referensi

[sunting | sunting sumber]
  1. ^ "Logic". www.math.wichita.edu. Diakses tanggal 2020-08-21. 
  • Kurnianingsih, Sri (2007). Matematika SMA dan MA 1B Untuk Kelas X Semester 2. Jakarta: Esis/Erlangga. ISBN 979-734-501-7.  (Indonesia)