Masalah pembenaman Connes
Artikel atau sebagian dari artikel ini mungkin diterjemahkan dari Connes embedding problem di en.wikipedia.org. Isinya masih belum akurat, karena bagian yang diterjemahkan masih perlu diperhalus dan disempurnakan. Jika Anda menguasai bahasa aslinya, harap pertimbangkan untuk menelusuri referensinya dan menyempurnakan terjemahan ini. Anda juga dapat ikut bergotong royong pada ProyekWiki Perbaikan Terjemahan. (Pesan ini dapat dihapus jika terjemahan dirasa sudah cukup tepat. Lihat pula: panduan penerjemahan artikel) |
Masalah pembenaman Connes adalah masalah besar dalam teori aljabar von Neumann. Masalah ini dirumuskan oleh Alain Connes pada tahun 1970-an. Pada saat itu, masalahnya dirumuskan dalam beberapa bidang matematika yang berbeda. Dan Vioculescu yang mengembangkan teori entropi bebas menemukan bahwa masalah pembenaman Connes berkaitan dengan keberadaan keadaan mikro. Beberapa hasil teori aljabar von Neumann dapat diperoleh dengan mengasumsi penyelesaian positif pada masalah tersebut. Masalah ini dihubungkan dengan beberapa pertanyaan dasar dalam teori kuantum, yang mengarah ke realisasi bahwa ia juga memiliki implikasi yang penting dalam ilmu komputer.
Masalah pembenaman Connes mengakui sejumlah perumusan setara.[1] Masalah ini khususnya mirip dengan masalah yang sudah lama terjadi:
- Konjektur QWEP Kirchberg dalam teori aljabar-C*
- Masalah Tsirelson dalam teori informasi kuantum
- Pra-ganda suatu aljabar von Neumann (terpisahkan) jelas terwakilkan dalam kelas teras.
Pada Januari 2020, Ji, Natarajan, Vidick, Wright, dan Yuen mengumumkan sebuah hasil dalam teori kekompleksan kuantum[2] yang menyiratkan sebuah jawaban negatif untuk masalah pembenaman Connes.[3][4][5][6][7][8][9]
Pernyataan
[sunting | sunting sumber]Misalkan adalah ultratapis bebas pada bilangan asli dan misalkan adalah faktor tipe II1 hiperhingga dengan teras . Maka, ultrakuasa ditulis sebagai berikut:
Misalkan adalah aljabar von Neumann mengenai barisan norma terbatas dan misalkan . Maka, hasil bagi adalah faktor II1 dengan teras , dengan adalah suatu barisan wakilan .
Masalah pembenaman Connes menanyakan apakah setiap faktor tipe II1 pada ruang Hilbert terpisahkan dapat dibenamkan menjadi setiap .
Penyelesaian positif untuk masalah ini akan menyiratkan adanya subruang invarian untuk kelas operator besar dalam faktor II-1 (Uffe Haagerup); semua grup diskret tercacahkan adalah hiperlinear. Penyelesaian positif untuk masalah ini juga akan menyiratkan melalui persamaan antara entropi bebas dan entropi bebas yang didefinisikan dengan keadaan mikro (Dan Voiculescu). Pada bulan Januari 2020, ada sebuah grup penelitian[10] yang dikatakan bahwa mereka telah menyelesaikan masalah dalam bentuk jawaban negatif: terdapat faktor von Neumann tipe II1 yang tidak dapat dibenamkan dalam ultrakuasa dari faktor hiperhingga II1.
Kelas isomorfisme adalah bebas dari ultratapis jika dan hanya jika hipotesis kontinum benar (Ge-Hadwin dan Farah-Hart-Sherman), namun sifat pembenaman tidak bergantung pada ultratapis karena aljabar von Neumann bertindak pada ruang Hilbert terpisahkan, dalam bahasa kasarnya, sangat kecil.
Masalah ini mengakui sejumlah perumusan setara.[1]
Konferensi ditujukan ke masalah pembenaman Connes
[sunting | sunting sumber]- Connes' embedding problem and quantum information theory workshop; Universitas Vanderbilt di Nashville Tennessee; 1–7 Mei, 2020 ((ditunda; Akan diumumkan)
- The many faceted Connes' Embedding Problem; BIRS, Kanada; 14–19 Juli, 2019
- Winter school: Connes' embedding problem and quantum information theory; 7–11 Januari, 2019
- Workshop on Sofic and Hyperlinear Groups and the Connes Embedding Conjecture; UFSC Florianopolis, Brazil; 10–21 Juni 2018
- Approximation Properties in Operator Algebras and Ergodic Theory; UCLA; 30 April–5 Mei, 2018
- Operator Algebras and Quantum Information Theory; Institut Henri Poincare, Paris; Desember 2017
- Workshop on Operator Spaces, Harmonic Analysis and Quantum Probability; ICMAT, Madrid; 20 Mei–14 Juni, 2013
- Fields Workshop around Connes Embedding Problem – University of Ottawa, 16–18 Mei, 2008
Referensi
[sunting | sunting sumber]- ^ a b Hadwin, Don (2001). "A Noncommutative Moment Problem". Proceedings of the American Mathematical Society. 129 (6): 1785–1791. doi:10.1090/S0002-9939-01-05772-0 . JSTOR 2669132. Kesalahan pengutipan: Tanda
<ref>
tidak sah; nama "cep" didefinisikan berulang dengan isi berbeda - ^ Ji, Zhengfeng; Natarajan, Anand; Vidick, Thomas; Wright, John; Yuen, Henry (2020). "MIP*=RE". arXiv:2001.04383 . Bibcode:2020arXiv200104383J.
- ^ Castelvecchi, Davide (2020). "How 'spooky' is quantum physics? The answer could be incalculable". Nature. 577 (7791): 461–462. doi:10.1038/d41586-020-00120-6 .
- ^ Kalai, Gil (2020-01-17). "Amazing: Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, and Henry Yuen proved that MIP* = RE and thus disproved Connes 1976 Embedding Conjecture, and provided a negative answer to Tsirelson's problem". Combinatorics and more (dalam bahasa Inggris). Diakses tanggal 2020-03-06.
- ^ Barak, Boaz (2020-01-14). "MIP*=RE, disproving Connes embedding conjecture". Windows On Theory (dalam bahasa Inggris). Diakses tanggal 2020-03-06.
- ^ Aaronson, Scott (16 January 2020). "MIP*=RE". Shtetl-Optimized (dalam bahasa Inggris). Diakses tanggal 2020-03-06.
- ^ Regan, Kenneth W. (2020-01-15). "Halting Is Poly-Time Quantum Provable". Gödel's Lost Letter and P=NP (dalam bahasa Inggris). Diakses tanggal 2020-03-06.
- ^ Vidick, Thomas (2020-01-14). "A Masters project". MyCQstate (dalam bahasa Inggris). Diakses tanggal 2020-03-06.
- ^ Hartnett, Kevin. "Landmark Computer Science Proof Cascades Through Physics and Math". Quanta Magazine (dalam bahasa Inggris). Diakses tanggal 2020-03-09.
- ^ Ji, Zhengfeng; Natarajan, Anand; Vidick, Thomas; Wright, John; Yuen, Henry (2020). "MIP*=RE". arXiv:2001.04383 . Bibcode:2020arXiv200104383J.
Bacaan lebih lanjut
[sunting | sunting sumber]- Capraro, Valerio (2010). "A Survey on Connes' Embedding Conjecture". arΧiv:1003.2076 [math.OA].
- Farah, I.; Hart, B.; Sherman, D. (2013). "Model theory of operator algebras I: stability". Bulletin of the London Mathematical Society. 45 (4): 825–838. arXiv:0908.2790 . doi:10.1112/blms/bdt014.
- Ge; Hadwin (2001). "Ultraproducts of C*-algebras". Oper. Theory Adv. Appl. 127: 305–326. doi:10.1007/978-3-0348-8374-0_17.
- Collins, Benoıt; Dykema, Ken (2008). "A linearization of Connes' embedding problem" (PDF). New York Journal of Mathematics. 14: 617–641.
- Sherman, David (2008). "Notes on Automorphisms of Ultrapowers of II1 Factors". Department of Mathematics, University of Virginia.
- Pisier, Gilles. "Tensor products of C*-algebras and operator spaces: The Connes-Kirchberg problem" (PDF).