Lompat ke isi

Seismologi

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
(Dialihkan dari Seismolog)

Seismologi adalah bagian dari ilmu geofisika yang mempelajari mekanisme terjadinya gempa bumi yang disertai dengan gelombang seismik. Para ahli di bidang seismologi disebut sebagai seismolog. Seismologi memberikan kontribusi penting dalam pemberian data dan informasi bagi struktur bangunan dalam rekayasa bangunan serta struktur bagian dalam Bumi.[1]

Sebuah Seismograf alat pengukur gempa bumi

Terminologi

[sunting | sunting sumber]

Seismologi berasal dari dua kata dalam bahasa Yunani, yaitu seismos yang berarti getaran atau goncangan dan logos yang berarti risalah atau ilmu pengetahuan. Orang Yunani menyebut gempa bumi dengan kata-kata seismos tes ges yang berarti Bumi bergoncang atau bergetar. Dengan demikian, secara sederhana seismologi dapat diartikan sebagai ilmu yang mempelajari fenomena getaran pada bumi, atau dengan kata sederhana, ilmu mengenai gempa bumi. Seismologi merupakan bagian dari ilmu geofisika. Seismologi dibagi lagi menjadi seismologi global dan eksplorasi.[2][3]

Pada tanggal 1 November 1755, terjadi gempa bumi di Lisboa, Portugal. Gempa bumi ini bersifat sangat merusak dan termasuk salah satu gempa bumi paling merusak dalam sejarah. Akibat dari gempa bumi ini, ada persepsi baru berupa adanya anomali alam yang tidak dapat diduga dan ditanggulangi oleh manusial. Seismologi akhirnya mengalami perkembangan karena banyaknya dokumen dan elemen ikonografi yang dihasilkan untuk mengetahui penyebab terjadinya gempa bumi ini secara filosofi.[4]

Seismologi awalnya hanya digunakan untuk mempelajari gempa bumi. Pada pengembangannya, seismologi juga dapat digunakan untuk kegiatan eksplorasi. Salah satu pemanfaatan seismologi untuk kegiatan eksplorasi ialah pada eksplorasi hidrokarbon. Getaran dibuat menggunakan bahan peledak untuk kemudian direkam getarannya sehingga kondisi di bawah permukaan tanah dapat diketahui. Setelah itu, bahan hidrokarbon berupa minyak bumi dan gas bumi dapat diketahui keberadaannya.[5]

Faktor absorpsi

[sunting | sunting sumber]

Faktor absorpsi adalah sifat pengurangan suatu bahan atau absoprsi energi tak berdimensi. Faktor absorpsi disamakan dengan faktor kualitas. Nama lainnya adalah faktor absorpsi spesifik atau faktor pengurangan spesifik. Berdasarkan perumusannya, pengurangan bahan terjadi ketika nilai dari suatu faktor absorpsi pada suatu bahan bernilai tak terhingga. Nilai faktor absorpsi ditentukan dari hasil perbandingan antara respon bahan gelombang geser dengan respon bahan gelombang longitudinal yang berbentuk redaman. Umumnya, rasio redaman gelombang geser lebih besar dibadingkan dengan rasio redaman gelombang longitudinal.[6]

Gelombang R

[sunting | sunting sumber]

Seismologi menggunakan peristiwa seismik yang menghasilkan gelombang R dengan frekuensi rendah untuk pencitraan interior Bumi. Sementara gelombang R dengan frekuensi menengah digunakan untuk mengetahui karakteristik tanah. Seismologi yang menghasilkan gelombang R dengan frekuensi menengah ini dimanfaatkan dalam teknik geofisika dan geoteknik. Dispersi geometrik gelombang R digunakan sebagai basis metode seismik. Hasil pencitraan direkam menggunakan solusi inversi dengan data seismik sebagai basis data. Perekaman dilakukan kepada sumber gelombang aktif maupun sumber gelombang pasif. Pencitraan juga dapat dilakukan menggunakan mikrotremor.[7]

Pencitraan tomografi seismik

[sunting | sunting sumber]

Seismologi merupakan salah satu bidang ilmu kebumian hasil gabungan geologi dan geofisika yang digunakan dalam adaptasi manusia dengan alam. Adaptasi ini ditinjau dari segi ilmu pengatahuan dan teknologi.[8] Seismologi menggunakan teknik pemindaian tomografi terkomputasi yang diadopsi dari ilmu kedokteran untuk melakukan pencitraan struktur bawah permukaan dengan menggunakan data gelombang gempa bumi. Teknik pencitraan ini digunakan dalam penelitian kodekteran untuk pencitraan anatomi tubuh manusia. Dalam seismologi, teknik hasil adopsi ini disebut teknik tomografi seismik. Pencitraan menggunakan teknik tomografi seismik dapat memberikan informasi yang terperinci mengenai struktur interior Bumi. Hal ini menjadi salah satu keuntungan dari adanya sumber informasi seismik dalam energi yang dibawa oleh gelombang gempa dari pusat gempa ke seluruh bagian bumi melalui medium yang dilewatinya.[9]

Peralatan

[sunting | sunting sumber]

Seismograf

[sunting | sunting sumber]

Seismograf merupakan alat yang digunakan oleh seismolog untuk mnegetahui tingkat kerusakan yang diakibatkan oleh gempa bumi. Alat ini mampu merekan hasil goncangan akibat gelombang gempa bumi di permukaan Bumi. Seismograf pertama kali dibuat oleh astronom Tiongkok yang bernama Zhang Heng. Seismograf modern menggunakan sistem elektronika. Namun, komponen dasarnya tetap sama dengan seismograf tradisional, yaitu sebuah drum yang bagian atasnya dilapisi kertas. Di dalamnya terdapat ruang yang menjadi tempat melekat dua engsel pada masing-masing ujungnya dan sebagai tempat pergerakan engsel. Bagian dalam seismograf juga memiliki pena dan suatu beban. Salah satu bagian ujung dari seismograf diberi palang dari bahan logam yang berbentuk kotak. Palang ini ditancapkan ke tanah. Bagian ujung lain dari palang menjadi tempat meletakkan beban. Sedangkan pena ditancapkan pada beban. Pada kondisi ini terjadi perputaran yang konstan pada drum.[10]

Saat gempa bumi terjadi, hanya bagian beban pada seismograf yang tidak bergerak. Pena akan membuat garis-garis yang tidak beraturan ketika drum dan kertas bergerak ke arah pena. Garis-garis inilah yang menjadi catatan mengenai pergerakan tanah akibat gempa bumi. Catatan ini disebut seismogram. Informasi yang dapat diperoleh dari seismogram adalah kekuatan gempa dan jarak kejadiannya dari seismograf. Kekurangan dari seismogram adalah tidak memberikan informasu secara tepat mengenai pusat terjadinya gempa bumi. Lokasi pusat gempa bumi dapat diukur secara tepat dengan menambahkan dua seismograf lainnya yang dipasang pada tempat yang berbeda.[11]

Penerapan ilmu

[sunting | sunting sumber]

Bangunan tahan gempa

[sunting | sunting sumber]

Perencanaan bangunan di wilayah yang rawan terjadi gempa bumi tidak hanya memerlukan pengetahuan mengenai kondisi tanah dan geologi setempat. Pemahaman mengenai seismologi dan potensi kebencanaan seismik juga diperlukan khususnya daerah rawan bencana seismik. Pengetahuan seismologi dan rekayasa gempa dijadikan sebagai acuan penilaian atas pengaruh gempa bumi terhadap manusia dan lingkungan.[12] Seismologi yang berisi informasi struktur seismik menerus atau terpisah, telah menjadi salah satu indikasi dalam pemodelan sumber gempa bumi atau pembuatan model-model seismotektonik.[13]

Anatomi zona seismogenik

[sunting | sunting sumber]

Pengamatan sesimologi merupakan salah satu bagian dari pencitraan anatomi zona seismogenik. Pencitraan menggunakan pengamatan sesimologi dilakukan bersama dengan pengamatan gempa pasca-guncangan, pemodelan data seismik refraksi, dan pencitraan seismik refleksi. Pengamatan sesimologi secara khusus memberikan gambaran mengenai struktur zona seismogenik secara umum. Tingkat ketelitian dari hasil pengamatannya tergolong rendah secara vertikal maupun horizontal karena pengamatan hanya mengambil data yang bersifat global. Ketelitian ditingkatkan dengan menggunakan perekaman gempa pasca-guncangan setelah terjdinya gempa bumi dengan skala besar. Gempa skala besar ini biasanya hanya terjadi di laut, sehingga perekaman pasca-guncangan dilakukan menggunakan seismometer bawah laut.[14]

Seismologi terkenal

[sunting | sunting sumber]
(Dari kiri ke kanan) Charles Richter, Hiroo Kanamori, dan Giuseppe Mercalli adalah deretan seismologi terkenal.

Referensi

[sunting | sunting sumber]

Catatan kaki

[sunting | sunting sumber]
  1. ^ Salim dan Siswanto 2018, hlm. 1.
  2. ^ "Modern Global Seismology". International Geophysics. 1995. doi:10.1016/s0074-6142(05)x8001-9. ISSN 0074-6142. 
  3. ^ Edward., Sheriff, Robert (1986). Exploration seismology. Cambridge University Press. ISBN 0521243734. OCLC 860588253. 
  4. ^ Araújo, Ana Cristina (24 November 2021). "The 1755 Lisbon Earthquake: The Catastrophe and the Reconstruction" (PDF). Storicamente (dalam bahasa Inggris). Viella. 2021 (17): 1. ISSN 1825-411X. 
  5. ^ Ronoatmojo, I. S., dan Burhanudinnur, M. (2021). Pengantar Seismologi Eksplorasi (PDF). Jakarta: Salemba Teknika. hlm. 1. ISBN 978-979-9549-57-0. 
  6. ^ Rosyidi 2013, hlm. 54.
  7. ^ Rosyidi 2013, hlm. 104.
  8. ^ Majelis Guru Besar ITB 2009, hlm. 14.
  9. ^ Majelis Guru Besar ITB 2009, hlm. 44.
  10. ^ Salim dan Siswanto 2018, hlm. 9.
  11. ^ Salim dan Siswanto 2018, hlm. 9-10.
  12. ^ Rosyidi 2013, hlm. 3.
  13. ^ Pasau, G., dan Tanauma, A. (2011). "Pemodelan Sumber Gempa di Wilayah Sulawesi Utara sebagai Upaya Mitigasi Bencana Gempa Bumi" (PDF). Jurnal Ilmiah Sains. 11 (2): 204. 
  14. ^ Harjono, Hery (2017). Seismotektonik Busur Sunda (PDF). Jakarta: LIPI Press. hlm. 67. ISBN 978-979-799-871-4. 

Daftar pustaka

[sunting | sunting sumber]

Bacaan lanjutan

[sunting | sunting sumber]

Pranala luar

[sunting | sunting sumber]