Lompat ke isi

Produk Cartesius

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
(Dialihkan dari Produk Kartesius)
Produk Cartesius Set an

Dalam matematika, khususnya teori himpunan, produk Cartesius dari dua himpunan A dan B, dilambangkan A × B, adalah himpunan semua pasangan terurut (a, b) di mana a berada di A dan b berada di B. Dalam notasi pembentuk himpunan dapat dinyatakan sebagai

[1]

Suatu tabel dapat dibuat dengan mengambil produk Cartesius dari suatu himpunan baris dan suatu himpunan kolom. Jika produk Cartesius baris × kolom diambil, sel-sel tabel berisi pasangan terurut dalam bentuk (nilai baris, nilai kolom).

Dengan cara yang sama, produk Cartesius dari n himpun, juga dikenal sebagai produk Cartesius n-lipat, yang dapat diwakili oleh himpunan n-dimensi, di mana setiap elemen adalah n-tuple. Pasangan yang dipesan adalah 2-tupel atau pasangan. Lebih umum lagi, kita dapat mendefinisikan produk Cartesius dari kumpulan set yang diindeks.

Produk Cartesius dinamai dari René Descartes,[2] yang formulasi geometri analitiknya memunculkan konsep, yang selanjutnya digeneralisasikan dalam hal produk langsung.

Setumpuk kartu

[sunting | sunting sumber]
Dek standar 52 kartu

Contoh ilustrasinya adalah setumpuk 52 kartu standar. kartu bermain standar peringkat {A, K, Q, J, 10, 9, 8, 7, 6, 5, 4, 3, 2} membentuk himpunan 13 elemen. Kartu ini cocok dengan {♠, , , ♣} membentuk himpunan empat elemen. Hasil kali Cartesian dari set ini mengembalikan set 52 elemen yang terdiri dari 52 pasangan terurut, yang sesuai dengan semua 52 kemungkinan kartu remi.

Ranks × Sets mengembalikan satu himpunan formulir {(A, ♠), (A, ), (A, ), (A, ♣), (K, ♠), ..., (3, ♣), (2, ♠), (2, ), (2, ), (2, ♣)}.

Sets × Ranks returns a set of the form {(♠, A), (♠, K), (♠, Q), (♠, J), (♠, 10), ..., (♣, 6), (♣, 5), (♣, 4), (♣, 3), (♣, 2)}.

Kedua set ini berbeda, bahkan terputus-putus.

Sistem koordinat dua dimensi

[sunting | sunting sumber]
Koordinat cartesius dari titik contoh

Contoh sejarah utama adalah bidang cartesius dalam geometri analitik. Untuk merepresentasikan bentuk geometris dengan cara numerik, dan mengekstrak informasi numerik dari representasi numerik bentuk, René Descartes menetapkan pasangan bilangan real pada setiap titik di bidang, yang disebut koordinat. Biasanya, komponen pasangan pertama dan kedua masing-masing disebut koordinat x dan y (lihat gambar). Himpunan dari semua pasangan seperti itu (yaitu, hasil kali Cartesius ℝ×ℝ, dengan ℝ menunjukkan bilangan riil) dengan demikian ditetapkan ke himpunan semua titik di bidang.[butuh rujukan]

Implementasi paling umum (teori himpunan)

[sunting | sunting sumber]

Definisi formal produk Cartesian dari prinsip teori himpunan mengikuti dari definisi pasangan terurut. Definisi paling umum dari pasangan terurut, Definisi Kuratowski adalah . Di bawah ini pada terdapat definisi adalah elemen dari , dan adalah bagian dari himpunan itu, di mana mewakili operator set daya. Oleh karena itu, keberadaan perkalian Cartesius dari dua himpunan manapun di ZFC mengikuti aksioma pemasangan, serikat, himpunan daya, dan spesifikasi. Karena fungsi biasanya didefinisikan sebagai kasus khusus dari hubungan, dan hubungan biasanya didefinisikan sebagai himpunan bagian dari produk Cartesius, definisi dari perkalian dua himpunan Cartesian harus sebelum sebagian besar definisi lainnya.

Non-komutatif dan non-asosiatif

[sunting | sunting sumber]

Karena A, B, C, dan D menjadi himpunan produk.

Produk Cartesius A×B bukan termasuk komutatif,

[3]

karena pasangan terurut dibalik kecuali setidaknya satu dari kondisi berikut terpenuhi:[4]

Sebagai contoh:

A = {1,2}; B = {3,4}
A × B = {1,2} × {3,4} = {(1,3), (1,4), (2,3), (2,4)}
B × A = {3,4} × {1,2} = {(3,1), (3,2), (4,1), (4,2)}
A = B = {1,2}
A × B = B × A = {1,2} × {1,2} = {(1,1), (1,2), (2,1), (2,2)}
A = {1,2}; B = ∅
A × B = {1,2} × ∅ = ∅
B × A = ∅ × {1,2} = ∅

Sebenarnya, produk Cartesius bukanlah asosiatif (kecuali salah satu set yang terlibat kosong).

Kalau contohnya A = {1}, maka (A × A) × A = { ((1,1),1) } ≠ { (1,(1,1)) } = A × (A × A).

Irisan, gabungan, dan himpunan bagian

[sunting | sunting sumber]
Contoh himpunan

A={y:1≤y≤4},
B={x∈ℝ:2≤x≤5}, dan C={x∈ℝ:4≤x≤7}, membuktikan
A×(BC) = (A×B)∩(A×C),
A×(BC) = (A×B)∪(A×C), dan

A×(BTemplat:Tsp\C) = (A×B)Templat:Tsp\(A×C)
Contoh himpunan

A={x∈ℝ:2≤x≤5}, B={x∈ℝ:3≤x≤7},
C={y∈ℝ:1≤y≤3}, D={y∈ℝ:2≤y≤4}, membuktikan

(AB)×(CD) = (A×C)∩(B×D).
(AB)×(CD)(A×C)(B×D) bisa dilihat dari contoh yang sama.

Produk Cartesian memenuhi properti berikut sehubungan dengan irisan (lihat gambar tengah).

[5]

Dalam kebanyakan kasus, pernyataan di atas tidak benar jika kita mengganti interseksi dengan gabungan (lihat gambar paling kanan).

Faktanya, kami memiliki:

Untuk perbedaan set, kami juga memiliki identitas berikut:

Berikut adalah beberapa aturan yang menunjukkan distribusi dengan operator lain (lihat gambar paling kiri):[4]

[5]

dimana menunjukkan pelengkap mutlak dari A.

Properti lain yang terkait dengan himpunan bagian adalah:

[6]

Kardinalitas

[sunting | sunting sumber]

Kardinalitas dari suatu himpunan adalah jumlah elemen dari himpunan tersebut. Misalnya, mendefinisikan dua himpunan: A = {a, b} dan B = {5, 6}. Kedua himpunan A dan himpunan B masing-masing terdiri dari dua elemen. Produk Cartesian mereka, ditulis sebagai A × B, menghasilkan himpunan baru yang memiliki elemen berikut:

A × B = {(a,5), (a,6), (b,5), (b,6)}.

di mana setiap elemen A dipasangkan dengan setiap elemen B , dan di mana setiap pasangan membentuk satu elemen himpunan keluaran. Jumlah nilai di setiap elemen dari himpunan yang dihasilkan sama dengan jumlah himpunan yang produk Kartesiannya diambil; 2 dalam kasus ini. Kardinalitas dari himpunan keluaran sama dengan hasil perkalian dari kardinalitas dari semua himpunan masukan. Maka rumusnya adalah,

|A × B| = |A| · |B|.[3]

Pada kasus ini, |A × B| = 4

sama halnya

|A × B × C| = |A| · |B| · |C|

and so on.

Himpunan A × B adalah himpunan tak hingga dari A atau B pada bilangan tak hingga, dan himpunan lainnya yang bukan termasuk himpunan kosong.[7]

Lihat pula

[sunting | sunting sumber]

Referensi

[sunting | sunting sumber]
  1. ^ Warner, S. (1990). Modern Algebra. Dover Publications. hlm. 6. 
  2. ^ "Cartesian". Merriam-Webster.com. 2009. Diakses tanggal December 1, 2009. 
  3. ^ a b Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama :2
  4. ^ a b Singh, S. (August 27, 2009). Cartesian product. Retrieved from the Connexions Web site: http://cnx.org/content/m15207/1.5/
  5. ^ a b CartesianProduct, PlanetMath.org.
  6. ^ Cartesian Product of Subsets. (February 15, 2011). ProofWiki. Retrieved 05:06, August 1, 2011 from https://proofwiki.org/w/index.php?title=Cartesian_Product_of_Subsets&oldid=45868
  7. ^ Peter S. (1998). Kursus Singkat dalam Matematika Himpunan Tak Terbatas. St. John's Review, 44(2), 35–59. Retrieved August 1, 2011, from http://www.mathpath.org/concepts/infinity.htm

Pranala luar

[sunting | sunting sumber]